Notes

Intramolecular Electron-Transfer Assistance in the Redox Reaction of (*µ***-Cyano)pentaammineruthenium(III) Pentacyanoferrate(II). Role of the Electronic Isomer and of the Specific Donor**-**Acceptor Interactions**

Paula Forlano, Alejandro R. Parise, Mariela Videla, and José A. Olabe*,[†]

Departamento de Química Inorgánica, Analítica y Química Física (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Capital Federal 1428, Republic of Argentina

*Recei*V*ed May 30, 1997*

Introduction

As a part of the emerging interest in the redox reactions of mixed-valence binuclear complexes, particular attention has been given to the reactions of complexes of the $[(NC)_5Fe-L-Ru (NH_3)_5$ ⁿ series with peroxydisulfate as oxidant.¹ Addressing the question of which metal center is kinetically active in the route to the fully oxidized complex highlighted the role of the electronic isomer having a $[Fe^{III}-Ru^{II}]$ distribution. This was done for $L = \mu$ -1,2-bis(4-pyridyl)ethane (bpa),² a noncommunicating bridging ligand, as well as for $L = \text{imidazolato} (\text{Im}^{-})^3$ and cyanopyridine $(Cnpy)^4$ which provide a weak coupling between the metal centers. By performance of a mechanistic analysis, conclusions were drawn on the ineffectiveness of the direct attack of peroxydisulfate on the Fe^{II} center, supported by previous measurements of the rates of reaction of different Fe^{II}(CN)₅Lⁿ⁻ complexes with peroxydisulfate.²⁻⁵ These rates were significantly slower than the ones for the corresponding $Ru^{II}(NH₃)₅Lⁿ⁺$ complexes by about 2-3 orders of magnitude.¹⁻⁴

Recently, a Marcus LFE relationship was found to hold for the redox reactions of the cyanoferrate complexes with peroxydisulfate;6 this is complementary of a similar behavior found for the ruthenium-pentaammine systems.3 As a result, the rationalization of mechanisms dealing either with the direct attack at Fe^{II} or with the relevance of electronic isomerization routes can be put on a more quantitative basis. In this work, we present a kinetic and mechanistic study with the cyanidebridged mixed-valence complex, for which a moderate electronic coupling between metal centers is operative.7

Experimental Section

Potassium hexacyanoferrate(II) and potassium peroxydisulfate (both from Merck) were recrystallized from water. The first one was dried at 100 °C for complete dehydration. $[Ru(NH_3)_5(OSO_2CF_3)](CF_3SO_3)_2$

† Telefax: (541) 782-0441. E-mail: olabe@ayelen.q3.fcen.uba.ar.

- (1) Haim, A. In *Electron Transfer Reactions: Inorganic, Organometallic, and Biological Applications*; Isied, S. S., Ed.; Advances in Chemistry Series No. 253; American Chemical Society: Washington, DC, 1997. (2) Olabe, J. A.; Haim, A. *Inorg. Chem.* **1989**, *28*, 3278.
-
- (3) Parise, A. C.; Baraldo, L. M.; Olabe, J. A. *Inorg. Chem*. **1996**, *35*, 5080.
- (4) Almaraz, A. E.; Gentil, L. A.; Baraldo, L. M.; Olabe, J. A. *Inorg. Chem*. **1996**, *35*, 7718.
- (5) (a) Yeh, A.; Haim, A. *J. Am. Chem. Soc*. **1985**, *107*, 369. (b) Sulfab, Y. *Inorg. Chim. Acta* **1977**, *22*, 35.
- (6) Chen, M. H.; Lee, S.; Liu, S.; Yeh, A. *Inorg. Chem*. **1996**, *35*, 2627.
- (7) Burewicz, A.; Haim, A. *Inorg. Chem*. **1988**, *27*, 1611.

was prepared as described in the literature.⁸ The mixed-valence binuclear complex was prepared by reaction of equimolar solutions of Fe(CN) $_6^{4-}$ and [Ru(NH₃)₅(H₂O)]³⁺ (pH 4.75) under an argon atmosphere. The latter ion was obtained through aquation of the rutheniumtriflate compound.7

The kinetic experiments for the oxidation reactions of the mixedvalence complex (*ca*. 5×10^{-5} M), as well as for mononuclear $Fe(CN)_{6}^{4-}$ with peroxydisulfate, were performed under pseudo-firstorder conditions (excess of peroxydisulfate, range $(1.5-15) \times 10^{-3}$ M), at $I = 0.1$ M (NaClO₄), pH 4.75, $T = 25.0$ °C, with a stoppedflow mixing device (Applied Photophysics RX 1000) interfaced with a Hewlett-Packard HP 8452A diode-array instrument. Alternatively, a Hitech PQ/SF-53 stopped-flow spectrophotometer was used for the complete set of experiments with the binuclear complex. The reaction of Fe(CN) $_6^{4-}$ was followed by measuring the formation of Fe(CN) $_6^{3-}$ at 420 nm. Either the formation of product (420 and 530 nm) or the disappearance of the reactant (800 nm) was used for the reaction of the binuclear complex.

The square-wave voltammograms were measured with a PAR 273 A instrument, by using a conventional three-electrode cell with vitreous carbon as the working electrode, a platinum net as the counterelectrode, and a Ag/AgCl electrode as a reference, at $I = 0.1$ M (KNO₃). Successive runs were obtained with different solutions, starting with mononuclear Fe(CN) 6^{4-} (ca. 5 \times 10⁻³ M) and adding aliquots of Ru- $(NH₃)₅H₂O³⁺$, up to an equimolar composition. The values of the potentials are referred to the NHE scale.

Results and Discussion

Upon mixing of the mixed-valence reactant with peroxydisulfate, the absorption of the intervalence band at 980 nm⁷ decreases and new bands appear at 420 and 530 nm (Supporting Information, Figure S1). The stoichiometry is described by eq 1.

$$
2[(NC)_5Fe^{II}CNRu^{III}(NH_3)_5]^{-} + S_2O_8^{2-} \rightarrow
$$

2[(NC)_5Fe^{III}CNRu^{III}(NH_3)_5] + 2SO_4^{2-} (1)

The 420 nm absorption corresponds to a LMCT transition from cyanides to Fe^{III}, as in Fe $(CN)_6^{3-}$, while the 530 nm band suggests a similar transition from the bridging cyanide to the Ru^{III} center.

The rate-law for eq 1 was $-d[Fe^{II}Ru^{III}]/dt = k_{obs}[Fe^{II}Ru^{III}]$ and was well-behaved up to 3 half-lives, independently of the selected wavelength. By the plotting of k_{obs} against $[S_2O_8^{2-}]$, a linear behavior was obtained, with a zero intercept. From the slope, the second-order rate constant was calculated, k_1 = $4.0 \pm 0.4 \text{ M}^{-1} \text{ s}^{-1}$ (25 °C), according to $k_{\text{obs}} = k_1[\text{S}_2\text{O}_8^2]^{-1}$.

At a first glance, the value of k_1 appears to be consistent with a direct attack of peroxydisulfate on the Fe^{II} center, as suggested by previous results on the oxidation of Fe^{II}(CN)₅Lⁿ⁻ complexes with peroxydisulfate, showing values around $1 M^{-1}$ s^{-1} ²⁻⁵ However, recent work⁶ showed that the rate constants for oxidation within the latter series of complexes are dependent on the redox potentials at the iron center, displaying a Marcus type LFE behavior. Figure 1 shows the linear correlation between ln k_{Fe} and E_{Fe} for a series of $Fe^{II}(CN)_5L^{n-}$ complexes. For the rate of oxidation of mononuclear $Fe(CN)₆⁴⁻$ with peroxydisulfate, under similar conditions as in the oxidation of the binuclear complex, the rate constant was $0.14 \pm 0.02 \text{ M}^{-1}$

⁽⁸⁾ Dixon, N. E.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. *Inorg. Chem.* **1984**, *23*, 2940.

Figure 1. Plots of $\ln k_{\text{et}}$ vs E° _M (M = Fe, Ru) for "intramolecular" electron transfer in the ion pairs $[X_5M-L-Ru^{II}(NH_3)_5]^n \parallel S_2O_8^{2-}$. Top $\lim_{M \to \infty} X_5M-L$: **1**, (NC)₅Fe^{III}-Im³⁻; **2**, (NC)₅Fe^{II}-bpa³⁻; **3**, (NC)₅Fe^{III} bpa^{2-} ; **4**, (edta) $Ru^{II}-pz^{2-}$; **5**, (NC)₅Fe^{II}-pz³⁻; **6**, (NC)₅Fe^{III}-CN⁴⁻; **7**, $(NC)_{5}Fe^{II}-3pyCN^{3-}$; **8**, $(NC)_{5}Fe^{II}-4pyCN^{3-}$; **9**, $(NC)_{5}Fe^{III}-3pyCN^{2-}$; **10**, $(NC)_{5}Co^{111}-pz^{2-}$; **11**, $(NC)_{5}Fe^{111}-4pyCN^{2-}$; taken from ref 3. Bottom line, similar relation for the ion pairs $[Fe^{II}(CN)_5L]^n \parallel S_2O_8^{2-}$, L: **1**, 4-ampy; **2**, py; **3**, pz; **4**, 4,4′-bpy; **5**, CN-; taken from ref 6. The values of k_{et} are in s⁻¹, and E° _M are in V *vs* NHE (both corrected for ion-pairing; *cf.* ref 3).

 s^{-1} (25 °C), in agreement with previously measured values.⁹ After correction for electrostatic effects, this value fitted quite well in the correlation, as seen in Figure 1, considering $E^{\circ}_{\text{Fe}} =$ 0.42 V.¹⁰ Now, for predicting the value of k_{Fe} in the binuclear complex, we need the redox potential, which was not measured earlier. From the voltammograms of solutions containing Fe(CN) $_6^{4-}$ and Ru(NH₃)₅H₂O³⁺ it can be seen that the peaks associated with the mononuclear Fe (0.42 V) and Ru (0.04 V) complexes shift to 0.65 and -0.06 V, respectively, upon mixing the reactants. The shifts associated with the formation of the binuclear [Fe^{II}Ru^{III}] complex are associated with the electronic coupling induced by the cyanide bridging ligand. A discussion on this subject can be found elsewhere.³⁻⁵ By entering into the linear correlation in Figure 1 with E° _{Fe(corr)} = 0.62 V, we predict a value of $k_{Fe} = 0.03 \text{ M}^{-1} \text{ s}^{-1}$, which is 2 orders of magnitude lower than the one measured in the present work. Thus, we could in principle rule out the direct attack on Fe^{II}.

Consider the mechanism displayed by eqs $2-4'$, which was proposed to hold for some related binuclear complexes with L $\dot{=}$ bpa, Im⁻, and CNpy.²⁻⁴

$$
[\text{Fe}^{\text{II}} - \text{Ru}^{\text{III}}] \right]^{-} \rightleftharpoons [\text{Fe}^{\text{III}} - \text{Ru}^{\text{II}}]^{-} \qquad K_{\text{et}} = k_{\text{et}}/k_{-\text{et}} \tag{2}
$$

$$
[Fe^{II} - Ru^{III}]^{-} + S_{2}O_{8}^{2-} \rightarrow [Fe^{III} - Ru^{III}] + SO_{4}^{-} + SO_{4}^{2-} \qquad k_{3} \tag{3}
$$

$$
[Fe^{II} - Ru^{III}]^{-} + SO_{4}^{-} \rightarrow [Fe^{III} - Ru^{III}] + SO_{4}^{2-} \qquad \text{fast (3')}
$$

[Fe^{III}-Ru^{II}]⁻ + S₂O₈²⁻
$$
\rightarrow
$$

[Fe^{III}-Ru^{III}] + SO₄⁻ + SO₄²⁻ k_{Ru} (4)

$$
[Fe^{III}-Ru^{II}]^-+SO_4^-\rightarrow [Fe^{III}-Ru^{III}]+SO_4^{2-} \qquad fast\qquad(4')
$$

From the mechanism in eqs 2–4', we obtain $k_1 = 2K_{\text{et}}k_{\text{Ru}} +$ $2k_3$ (cf. ref 3). If we assume that $2k_3$ is negligible, the secondorder rate constant for oxidation of the binuclear complex, *k*1, should be related to the equilibrium constant for electronic isomerization, K_{et} , times k_{Ru} , which involves a direct attack on the Ru^{II} center (eq 4). An estimation of K_{et} can be obtained with the following thermodynamic cycle:

Here E° ₁ corresponds to the measured value for the iron couple and *E*°³ was estimated by comparison with related nitrile-bound ruthenium complexes.^{4,11} Thus, $\Delta E^{\circ}_{et} = -0.15$ V and $K_{et} =$ 2.9×10^{-3} . With K_{et} and the experimental value for k_1 , we calculate a value for $k_{\text{Ru}} = 665 \text{ M}^{-1} \text{ s}^{-1}$. To check if this value has any significance, we enter the linear correlation for the [Ru- $(NH_3)_{5}L$ ⁿ series corrected for ion-pairing effects,³ also shown in Figure 1. We find, for $E^{\circ}_{\text{Ru, corr}} = 0.47 \text{ V}$, that the value of ln *k*Ru, corr, 8.4, fits very well indeed.

As a conclusion, the mechanism involving the fast reaction of the unstable electronic isomer has been validated again. Two points should be stressed: First, the fact that the Ru^{II} center is kinetically active in the present study is predictable, because *K*et presents a moderately high value, similar to the one found for $L = bpa$;² note that this path was operative even with the imidazolato-bridged complex, with $K_{\text{et}} = 1.2 \times 10^{-6}$. Second, the values of k_{Ru} and k_{Fe} in Figure 1 have been corrected for electrostatic interactions, associated with the ion-pair formation between $S_2O_8^{2-}$ and the corresponding binuclear complexes.^{3,12} As the intrinsic reactivities for the $Fe(CN)_5L^{n-}$ and [Ru- $(NH_3)_5L\gamma^{n+}$ ions seem to be very similar (given the similar electron exchange rates), $6,13$ the two lines for the iron and ruthenium complexes in Figure 1 should, in fact, collapse into a single line. In contrast to the generally accepted mechanism,¹² in which eq 5 considers only ion-pair interactions (K_{ip}) , we now

[Fe^{III}-Ru^{II}]⁻ + S₂O₈²⁻
$$
\rightleftharpoons
$$

[Fe^{III}-Ru^{II}]⁻ || S₂O₈²⁻ K_{pc} , fast (5)

[Fe^{III}-Ru^{II}]⁻ || S₂O₈²⁻
$$
\rightarrow
$$

[Fe^{III}-Ru^{III}] || SO₄⁻, SO₄²⁻ k_{et} , slow (6)

$$
[Fe^{III} - Ru^{III}] \parallel SO_4^- , SO_4^{2-} \rightarrow products \tag{7}
$$

define K_{pc} ,¹⁴ corresponding to the formation of a precursor complex which takes into account also the specific interactions between the reactants.

As $k_{\text{et}} = k_{\text{Ru}}/K_{\text{pc}}$, the upward shift in k_{et} for the ruthenium line in Figure 1 corresponds to an energy difference associated with K_{pc} and K_{ip} values, which amounts to *ca*. 5 kcal/mol. The explanation agrees with the closely similar behavior of bound ammines through their interactions with donor solvents.¹⁵ In contrast, donor cyanides show specific interactions with acceptor

- (12) Haim, A. *Comments Inorg. Chem*. **1985**, *4*, 113.
- (13) Creutz, C. *Prog. Inorg. Chem*. **1983**, *30,* 1.
- (14) The chemical process related to K_{pc} involves two energetic contributions associated with electrostatic and specific interactions. Consequently, $K_{\text{pc}} = K_{\text{si}} K_{\text{ip}}$, where $K_{\text{si}} = 4.6 \times 10^3 \text{ M}^{-1}$ (-5 kcal/mol; see
text) and $K_{\text{ip}} = 0.14 \text{ M}^{-1}$ for [Fe^{III}-Ru^{II}]⁻ || S₂O₈²⁻ (see ref 12 for detailed calculation); then, $K_{\text{pc}} = 630 \text{ M}^{-1}$.
- (15) Curtis, J. C.; Sullivan, B. P.; Meyer, T. J. *Inorg. Chem*. **1983**, *22*, 224.

⁽⁹⁾ López, C.; Rodríguez, A.; Gómez-Herrera, H.; Sánchez, F.; Moyá, M. L. *J. Chem. Soc., Faraday Trans*. **1992**, *88*, 2701.

⁽¹⁰⁾ Curtis, J. C.; Meyer, T. J. *Inorg. Chem*. **1982**, *21*, 1562.

⁽¹¹⁾ Matsubara, T.; Ford, P. C. *Inorg. Chem*. **1976**, *15*, 1107. This estimation is crucial, because it affects both ΔE° _{et} and k_{Ru} values. It is known that cyanide interacts strongly with [Ru(NH₃)₅] when binding through the N(nitrile) atom. An average value was taken, 0.5 V, considering the *E* values measured for $\bar{L} = Cnpy$, AcN, and other nitrile-binding ligands. The dotted line in Figure 1 highlights the calculated values for $E'_{\text{Ru}}^{\circ} = E_{\text{Ru}}^{\circ} \pm 0.1$ V, showing that the uncertainties do not shift significantly the k_{Ru} values.

solvents¹⁶ and, thus, should not be preferentially involved in the interactions with the peroxydisulfate reactant.

Acknowledgment. Our thanks go to the University of Buenos Aires (UBA, Grant EX 116) and the Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet). J.A.O. is

Supporting Information Available: Successive UV-visible spectra in the reaction of $[(NC)_5Fe^{II}CNRu^{III}(NH_3)_5]^-$ with an excess of $S_2O_8^{2-}$, Figure S1, and kinetic data for the latter reaction, Figure S2 (3) pages). Ordering information is given on any current masthead page.

IC9706414

^{(16) (}a) Toma, H. E.; Takasugi. *J. Solution Chem*. **1983**, *12*, 547. (b) Toma, H. E.; Takasugi. **1989**, *18*, 575.